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Fast Polynomial Root Finder - Part Six. 
By Henrik Vestermark (hve@hvks.com) 

 
 

Abstract:  
We elaborated in the part Sixth paper on Ostrowski's multi-point method for finding Polynomial 
roots and devised a modified version dealing efficiently with Polynomials with real coefficients. 
This paper is part of a multi-series of papers on how to use the same framework to implement 
different root finder methods. 
 

Introduction: 
This is the sixth and final paper on various root finder methods. We will address the so-called 
multi-point method, which I believe was first invented by Ostrowski in the sixties. As the name 
applies you do a series of intermediate point steps aimed at lowering the computational 
requirement but maintaining a higher convergence rate than the traditional methods. Ostrowski's 
achievement was to develop a fourth-order convergence rate but only required to evaluate the 
Polynomial P(x) and its first derivative P’(x). Even though we need to take an extra intermediate 
step we can still maintain the frameworks as established in parts one to four of the series of 
papers. 
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Why the Ostrowski Method? 
 
Alexander Ostrowski (1893–1986) was a mathematician who made significant contributions to 
various fields, including numerical analysis, the theory of numbers, and algebra. Born in Kyiv, 
which was then part of the Russian Empire, Ostrowski had a diverse and extensive academic 
career that spanned several countries and institutions. 
 
Alexander Ostrowski made significant contributions to the field of numerical analysis, 
particularly in developing methods for finding the roots of polynomials. One of his notable 
contributions is related to multi-point methods for polynomial root finding. These methods are an 
extension of the classical iterative methods, like Newton's method, and they aim to improve the 
convergence rate and accuracy by simultaneously using multiple points or iterations. 
 
Ostrowski's work in this area is part of a broader spectrum of numerical algorithms designed for 
efficiently finding the roots of polynomials, which is a fundamental problem in numerical 
mathematics. His research has been influential in developing more advanced algorithms and 
techniques used in computational mathematics today. 
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Ostrowski has contributed with two different methods for polynomial roots. One is the multi-
point method addressed in this paper and the other is the square root method. The square root 
method uses the iterations: 

𝑥௡ାଵ = 𝑥௡ − √𝑚
𝑝(𝑥௡)

𝑝′(𝑥௡)

1

ඨ1 −
𝑝(𝑥)𝑝′′(𝑥௡)

𝑝′(𝑥௡)ଶ

 

 
Where m is the modification when the multiplicity m is > 1.  
However, in this paper, we will address the multi-point formula: 
 

𝑦௡ = 𝑥௡ −
𝑝(𝑥௡)

𝑝′(𝑥௡)
 

𝑥௡ାଵ = 𝑦௡ −
𝑝(𝑥௡)

𝑝(𝑥௡) − 2𝑝(𝑦௡)

𝑝(𝑦௡)

𝑝′(𝑥௡)
 

 
The Ostrowski multi-point methods started a furry of research where other authors suggested 
methods that offer a convergence rate of 4-9.  As an example of this extreme research, Kumar 
offers the below 9th-order method. 
 

𝑦௡ = 𝑥௡ −
𝑝(𝑥௡)

𝑝[𝑤௡ , 𝑥௡]
 

𝑣௡ = 𝑦௡ − [1 + (
𝑃(𝑦௡)

𝑃(𝑥௡)
)ଶ]

𝑝(𝑦௡)𝑃[𝑥௡ , 𝑤௡]

𝑃[𝑦௡ , 𝑥௡]𝑃[𝑦௡, 𝑤௡]
 

𝑥௡ାଵ = 𝑣௡ − [1 + 2 ቀ
௉(௬೙)

௉(௫೙)
ቁ

ଶ

− 4
௉(௩೙)

௉(௬೙)
]

௣(௩೙)௉([,௪೙]

௉[௬೙,௫೙]௉[௬೙,௪೙]
, where P[𝑥௡ , 𝑤௡]=

௉(௪೙)ି௉(௫೙)

௉(௫೙)
;  𝑤௡ = 𝑥௡ + 𝑃(𝑥௡) 

 
Notice for the Kumar method there is no need to evaluate any derivative of P(x). 
 

Ostrowski's multi-point Method 
 
Ostrowski’s multi-point method is: 
 

𝑦௡ = 𝑥௡ −
𝑝(𝑥௡)

𝑝′(𝑥௡)
 

𝑥௡ାଵ = 𝑦௡ −
𝑝(𝑥௡)

𝑝(𝑥௡) − 2𝑝(𝑦௡)

𝑝(𝑦௡)

𝑝′(𝑥௡)
 

 
This method is remarkable since it archived a 4-order convergence rate and only needs to 

evaluate the P(x) twice and the first derivative P’(x). This yields an efficiency index of 4
భ

య =
1.59, better than both the Newton and the Halley methods. The first step is a regular Newton step 
followed by an enhancement of the step size yielding a 4-order convergence. However, when 
dealing with multiple roots it suffers the same fate as the other methods with a linear 
convergence rate. 
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What to do about mulƟple roots 
Well, one solution is to realize that the first intermediate step is a classic Newton iteration that 
has a modified version that can handle multiple roots effectively. Adding the modified Newton 
step you get a method to handle multiplicity >1; see below. 
 
 
Stage 1 
 
Stage 2 

𝑦௡ = 𝑥௡ − 𝑚
𝑝(𝑥௡)

𝑝ᇱ(𝑥௡)
, 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 

𝑥௡ାଵ = 𝑦௡ −
𝑝(𝑥௡)

𝑝(𝑥௡) − 2𝑝(𝑦௡)

𝑝(𝑦௡)

𝑝′(𝑥௡)
 

 

 
However, the second refinement does not work well for m> 1. My approach to this is therefore:  

a) When an iterative step xn is not near a root and we see improvement using the multi-step 
and or shortening of the step size (see the description of the Newton method) then stick 
with this modified Newton approach. 

b) First when you do not see any improvement using the multi-step check and or shortening 
of step, then do the second refinement and obtain a 4th-order convergence for the 
remaining iterations. Well, what about multiplicity greater than one? That is not a 
problem since it will keep the Newton method at stage 1 and convert quadratic to that 
root and in that, special case the Ostrowski multi-point method will not be a 4th order 
method, however for simply root it will, however, be a 4th order method.  

 

How does the Ostrowski method stack up against other classical 
methods? 
 
To see how it works with the different methods let's see the method against a simple Polynomial. 
 

𝑃(𝑥) =  (𝑥 − 2)(𝑥 + 2)(𝑥 − 3)(𝑥 + 3) = 𝑥ସ − 13𝑥ଶ + 36 
 
The above-mentioned Polynomial is an easy one for most methods. Moreover, as you can see the 
higher-order method requires fewer numbers of iterations. However, also more work to be done 
per iteration.  
 
Method Newton Halley Household 3rd  Ostrowski 
Iterations x x x x 
Start guess 0.8320502943378436 0.8320502943378436 0.8320502943378436 0.8320502943378436 

1 2.2536991416170737  1.6933271400922734 2.033435992687734  
 

2.0863365344560694  
 

2 1.9233571772166798 1.9899385955094577 1.9999990577501767 1.999968127551831 

3 1.9973306906698116 1.9999993042509177 2 2 

4 1.999996107736492 2   

5 1.9999999999916678    

6 2    
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Here is an example of  
 

 
 
 
The first root ends up as a complex conjugated root x=(1-i) and the third root is another complex 
conjugated root at (+2-i) and the last root is found directly as x=5. Notice that the search always 
starts out on the real axis and then rotate into the complex plane after a few iterations. 
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The above picture shows the convergence rate of approximately 4 for the Ostrowski method 
while approaching the roots and is in line with expectations.  
 

What to Modify? 
Compared to the Newton method (part two) we can luckily reuse most of the code already 
available with the Newton method. 
 
From Part Two, the Steps Include: 

1. Finding an initial point 
2. Executing the Ostrowski multi-point iteration, including polynomial evaluation via the 

Horner method 
3. Calculating the final upper bound 
4. Polynomial deflation 
5. Solving the quadratic equation 

 
Ad 1,3,4,5) Will be identical to the Newton method and need no modification 
   
Ad 2) We can simply add the following code to the Stage 2 code after the calculation of the final 
upper bound to implement the Ostrowski multi-point method.  
      // Perform the Ostrowski multi-point step 
      // Pz is P(yn), pzprev is P(zn) 
      // Do the Ostrowski step as the second part of the multi-point iteration 
      z = z - pzprev.pz / (pzprev.pz - complex<double>(2) * pz.pz) * pz.pz / p1z.pz; 
      pz = horner(coeff, z); // Evaluate the new iteration point 
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The Implementation of the Ostrowski’s Multi-point Method 
This is the same source as in parts two and three except for the change needed to evaluate 
Ostrowski’s multi-point iteration step instead of Newton or Halley.  
 
The implementation of this root finder follows the method as layout in Part One.  
 

1) First, we eliminate simple roots (roots equal to zero) 
2) Then we find a suitable starting point to start our Newton Iteration, this also includes 

preliminary termination criteria based on an acceptable value of P(x) where we will stop 
the current iteration. 

3) Start the Ostrowski iteration 
a. The first step is to find the dxn=P(xn)/P’(xn) and of course, decide what should happen 

if P’(xn) is zero. When this condition arises, it is most often due to a local minimum 
and the best course of action is to alter the direction with a factor   
dxn=dxn(0.6+i0.8)m.  This is equivalent to rotating the direction with an odd degree 
of 53 degrees and multiplying the direction with the factor m. A suitable value for m 
=5 is reasonable when this happens. 

b. Furthermore, it is easy to realize that if P’(xn)~0. You could get some unreasonable 
step size of dxn and therefore introduce a limiting factor that reduces the current step 
size if abs(dxn)>5·abs(dxn-1) than the previous iteration's step size. Again, you alter 
the direction with dxn=dxn(0.6+i0.8)5(abs(dxn-1)/abs(dxn)). 

c. These two modifications (a and b) make the method very resilient and make it always 
converge to a root. 

d. The next issue is to handle the issue with multiplicity > 1 which will slow the 2nd 
order convergence rate down to a linear convergence rate. After a suitable dxn is 

found and a new 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇲ(௫೙)
 we then look to see if P(xn+1)>P(xn):  If so we 

look at a revised xn+1=xn-0.5dxn and if P(xn+1)≥P(xn) then he used the original xn+1 as 
the new starting point for the next iteration. If not then we accept xn+1 as a better 
choice and continue looking at a newly revised xn+1=xn-0.25dxn. If on the other hand 
the new  P(xn+1)≥P(xn) we used the previous xn+1 as a new starting point for the next 
iterations. If not then we assume we are nearing a new saddle point and the direction 
is altered with  dxn=dxn(0.6+i0.8) and we use 𝑥௡ାଵ = 𝑥௡ − 𝑑𝑥௡ as the new starting 
point for the next iteration. 
if on the other hand  𝑃(𝑥௡ାଵ) ≤ 𝑃(𝑥௡): Then we are looking in the right direction and 
we then continue stepping in that direction using xn+1=xn-mdxn, m=2,..,n as long as 
𝑃(𝑥௡ାଵ) ≤ 𝑃(𝑥௡) and use the best m for the next iterations. The benefit of this 
process is that if there is a root with the multiplicity of m then m will also be the best 
choice for the stepping size and this will maintain the 2nd-order convergence rate even 
for multiple roots. Step c and d is the same as for the Newton method. 

e. When we get within the convergence circle (stage 2) we bypass step d and just add 
Ostrowski's second step to complete an iteration round. 

 𝑥௡ାଵ = 𝑦௡ −
௣(௫೙)

௣(௫೙)ିଶ௣(௬೙)

௣(௬೙)

௣ᇱ(௫೙)
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4) Processes a-e continue until the stopping criteria are reached where after the root xn is 
accepted and deflated up in the Polynomial. A new search for a root using the deflated 
Polynomial is initiated. 

 
We divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get into 
the convergence circle where we are sure that Ostrowski’s method will converge towards a root. 
Since this first step is a regular Newton step, we will use the same computation as the Newton 
method. When we get into that circle, we automatically switch to stage 2. In stage 2 we skip step 

d) and just use an unmodified Newton step: 𝑦௡ = 𝑥௡ −
௣(௫೙)

௣ᇲ(௫೙)
  followed by Ostrowski's second 

step: 𝑥௡ାଵ = 𝑦௡ −
௣(௫೙)

௣(௫೙)ିଶ௣(௬೙)

௣(௬೙)

௣ᇱ(௫೙)
 until the stopping criteria have been satisfied. In case we get 

outside the convergence circle, we switch back to stage 1 and continue the iteration. 
We use the same criteria to switch to stage 2 as we did for both the Newton and Halley methods.  
 
Now we have everything we need to determine when to switch to stage 2. 
 
 

The C++ code 
The C++ code below finds the Polynomial roots with Polynomial real coefficients using 
Ostrowski’s method. There are only very few changes made from the Newton version to 
implement Ostrowski’s method.  We only added the following few lines of code. 
                // Perform the Ostrowski multi-point step 
                // Pz is P(yn), pzprev is P(zn) 
                // Do the Ostrowski step as the second part of the multi-point iteration 
                z = z - pzprev.pz / (pzprev.pz - complex<double>(2) * pz.pz) * pz.pz / 
p1z.pz; 
                pz = horner(coeff, z); // Evaluate the new iteration point 

when switching to stage 2. 
 
Below is the full source. 
/* 
 ******************************************************************************* 
 * 
 *                       Copyright (c) 2023 
 *                       Henrik Vestermark 
 *                       Denmark, USA 
 * 
 *                       All Rights Reserved 
 * 
 *   This source file is subject to the terms and conditions of 
 *   Henrik Vestermark Software License Agreement which restricts the manner 
 *   in which it may be used. 
 * 
 ******************************************************************************* 
*/ 
 
/* 
 ******************************************************************************* 
 * 
 * Module name     :   Ostrowski.cpp 
 * Module ID Nbr   : 
 * Description     :   Solve n degree polynomial using Ostrowski multi-point method 
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 * -------------------------------------------------------------------------- 
 * Change Record   : 
 * 
 * Version Author/Date  Description of changes 
 * -------  ------------- ---------------------- 
 * 01.01 HVE/24Dec2023 Initial release 
 * 
 * End of Change Record 
 * -------------------------------------------------------------------------- 
*/ 
 
// define version string  
static char _VOSTROWSKI_[] = "@(#)testOstrowski.cpp 01.01 -- Copyright (C) Henrik 
Vestermark"; 
 
#include <algorithm> 
#include <vector> 
#include <complex> 
#include <iostream> 
#include <functional> 
 
//#include "../intervalprecision.h" 
 
using namespace std; 
 
constexpr int       MAX_ITER = 50; 
 
// Find all polynomial zeros using a modified Newton method 
// 1) Eliminate all simple roots (roots equal to zero) 
// 2) Find a suitable starting point 
// 3) Find a root using Newton 
// 4) Divide the root up in the polynomial reducing its order with one 
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the 
remaining one or two roots are found by the direct formula 
// Notice: 
//      The coefficients for p(x) is stored in descending order. coefficients[0] is 
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),...,  coefficients[n-1] is a(1)x, 
coefficients[n] is a(0) 
// 
static vector<complex<double>> PolynomialRootsOstrowski(const vector<double>& 
coefficients) 
{ 
    struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; }; 
    const complex<double> complexzero(0.0);  // Complex zero (0+i0) 
    size_t n;       // Size of Polynomial p(x)   
    eval pz;        // P(z) 
    eval pzprev;    // P(zprev) 
    eval p1z;       // P'(z) 
    eval p1zprev;   // P'(zprev) 
    complex<double> z;      // Use as temporary variable 
    complex<double> dz;     // The current stepsize dz 
    int itercnt;    // Hold the number of iterations per root 
    vector<complex<double>> roots;  // Holds the roots of the Polynomial 
    vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z) 
 
    copy(coefficients.begin(), coefficients.end(), coeff.begin()); 
    // Step 1 eliminate all simple roots 
    for (n = coeff.size() - 1; n > 0 && coeff.back() == 0.0; --n) 
        roots.push_back(complexzero);  // Store zero as the root 
 
    // Compute the next starting point based on the polynomial coefficients 
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    // A root will always be outside the circle from the origin and radius min 
    auto startpoint = [&](const vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        double a0 = log(abs(a.back())); 
        double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n)); 
 
        for (size_t i = 1; i < n; i++) 
            if (a[i] != 0.0) 
            { 
                double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i)); 
                if (tmp < min) 
                    min = tmp; 
            } 
 
        return min * 0.5; 
    }; 
 
    // Evaluate a polynomial with real coefficients a[] at a complex point z and 
    // return the result  
    // This is Horner's methods avoiding complex arithmetic 
    auto horner = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double s = 0.0; 
        double r = a[0]; 
        eval e; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            double t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
        } 
 
        e.z = z; 
        e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r); 
        e.apz = abs(e.pz); 
        return e; 
    }; 
 
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with real coefficient a[] at a complex point z.  
    // (Adam's test) 
    auto upperbound = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double u = sqrt(q); 
        double s = 0.0; 
        double r = a[0]; 
        double e = fabs(r) * (3.5 / 4.5); 
        double t; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            t = a[i] - p * r - q * s; 
            s = r; 
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            r = t; 
            e = u * e + fabs(t); 
        } 
        t = a[n] + z.real() * r - q * s; 
        e = u * e + fabs(t); 
        e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) + 
            fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 
1); 
 
        return e; 
    }; 
 
   // Do Ostrowski iteration for polynomial order higher than 2 
    for (; n > 2; --n) 
    { 
        const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times 
larger than the previous step size 
        const complex<double> rotation = complex<double>(0.6, 0.8);  // Rotation amount 
        double r;               // Current radius 
        double rprev;           // Previous radius 
        double eps;             // The iteration termination value 
        bool stage1 = true;     // By default it start the iteration in stage1 
        int steps = 1;          // Multisteps if > 1 
        vector<double> coeffprime; 
 
        // Calculate coefficients of p'(x) 
        for (int i = 0; i < n; i++) 
            coeffprime.push_back(coeff[i] * double(n - i)); 
 
        // Step 2 find a suitable starting point z 
        rprev = startpoint(coeff);      // Computed startpoint 
        z = coeff[n - 1] == 0.0 ? complex<double>(1.0) : complex<double>(-coeff[n] / 
coeff[n - 1]); 
        z *= complex<double>(rprev) / abs(z); 
 
        // Setup the iteration 
        // Current P(z) 
        pz = horner(coeff, z); 
 
        // pzprev which is the previous z or P(0) 
        pzprev.z = complex<double>(0); 
        pzprev.pz = coeff[n]; 
        pzprev.apz = abs(pzprev.pz); 
 
        // p1zprev P'(0) is the P'(0) 
        p1zprev.z = pzprev.z; 
        p1zprev.pz = coeff[n - 1];       // P'(0) 
        p1zprev.apz = abs(p1zprev.pz); 
 
        // Set previous dz and calculate the radius of operations. 
        dz = pz.z;      // dz=z-zprev=z since zprev==0 
        r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size 
allowed 
        // Preliminary eps computed at point P(0) by a crude estimation 
        eps = 2 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG); 
 
        // Start iteration and stop if z doesnt change or apz <= eps 
        // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a 
root 
        for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER; 
itercnt++) 
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        { 
     // Calculate current P'(z) 

            p1z = horner(coeffprime, pz.z); 
            if (p1z.apz == 0.0)                 // P'(z)==0 then rotate and try again 
                dz *= rotation * complex<double>(Max_stepsize);  // Multiply with 5 to 
get away from saddlepoint 
            else 
            { 
                dz = pz.pz / p1z.pz;  // next dz 
                // Check the Magnitude of Newton's step 
                r = abs(dz); 
                if (r > rprev) // Large than 5 times the previous step size 
                {   // then rotate and adjust step size to prevent wild step size near 
P'(z) close to zero 
                    dz *= rotation * complex<double>(rprev / r); 
                    r = abs(dz); 
                } 
                rprev = r * Max_stepsize;  // Save 5 times the current step size for the 
next iteration check of reasonable step size 
                // Calculate if stage1 is true or false. Stage1 is false if the Newton 
converge otherwise true 
                z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z); 
                stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4) || (steps != 1); 
            } 
            // Step accepted. Save pz in pzprev 
            pzprev = pz; 
 
            z = pzprev.z - dz;      // Next z 
            pz = horner(coeff, z);  //ff = pz.apz; 
            // Add this point all we have done is perform a Newton Step 
            steps = 1; 
            if (stage1) 
            {  // Try multiple steps or shorten steps depending if P(z) is an 
improvement or not P(z)<P(zprev) 
                bool div2; 
                complex<double> zn; 
                eval npz; 
 
                zn = pz.z; 
                for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps) 
                { 
                    if (div2 == true) 
                    {  // Shorten steps 
                        dz *= complex<double>(0.5); 
                        zn = pzprev.z - dz; 
                    } 
                    else 
                        zn -= dz;  // try another step in the same direction 
 
                    // Evaluate new try step 
                    npz = horner(coeff, zn); 
                    if (npz.apz >= pz.apz) 
                        break; // Break if no improvement 
 
                    // Improved => accept step and try another round of step 
                    pz = npz; 
 
                    if (div2 == true && steps == 2) 
                    {   // To many shorten steps => try another direction and break 
                        dz *= rotation; 
                        z = pzprev.z - dz; 
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                        pz = horner(coeff, z); 
                        break; 
                    } 
                } 
            } 
            else 
            {   // calculate the upper bound of error using Adam's test for real 
coefficients 
                // Now that we are within the convergence circle. 
                eps = upperbound(coeff, pz.z); 
                // Perform the Ostrowski multi-point step 
                // Pz is P(yn), pzprev is P(zn) 
                // Do the Ostrowski step as the second part of the multi-point iteration 
                z = z - pzprev.pz / (pzprev.pz - complex<double>(2) * pz.pz) * pz.pz / 
p1z.pz; 
                pz = horner(coeff, z); // Evaluate the new iteration point 
            } 
        } 
 
        // Real root forward deflation. 
        // 
        auto realdeflation = [&](vector<double>& a, const double x) 
        { 
            const size_t n = a.size() - 1; 
            double r = 0.0; 
 
            for (size_t i = 0; i < n; i++) 
                a[i] = r = r * x + a[i]; 
 
            a.resize(n);    // Remove the highest degree coefficients. 
        }; 
 
        // Complex root forward deflation for real coefficients 
        // 
        auto complexdeflation = [&](vector<double>& a, const complex<double> z) 
        { 
            const size_t n = a.size() - 1; 
            double r = -2.0 * z.real(); 
            double u = norm(z); 
 
            a[1] -= r * a[0]; 
            for (int i = 2; i < n - 1; i++) 
                a[i] = a[i] - r * a[i - 1] - u * a[i - 2]; 
 
            a.resize(n - 1); // Remove top 2 highest degree coefficients 
        }; 
 
        // Check if there is a very small residue in the imaginary part by trying 
        // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a 
better root than z. 
        z = complex<double>(pz.z.real(), 0.0); 
        pzprev = horner(coeff, z); 
        if (pzprev.apz <= pz.apz) 
        { // real root  
            pz = pzprev; 
            // Save the root 
            roots.push_back(pz.z); 
            realdeflation(coeff, pz.z.real()); 
        } 
        else 
        {   // Complex root 
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            // Save the root 
            roots.push_back(pz.z); 
            roots.push_back(conj(pz.z)); 
            complexdeflation(coeff, pz.z); 
            --n; 
        } 
 
    }   // End Iteration 
 
    // Solve any remaining linear or quadratic polynomial 
    // For Polynomial with real coefficients a[],  
    // The complex solutions are stored in the back of the roots 
    auto quadratic = [&](const std::vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> v; 
        double r; 
 
        // Notice that a[0] is !=0 since roots=zero has already been handle 
        if (n == 1) 
            roots.push_back(complex<double>(-a[1] / a[0], 0)); 
        else 
        { 
            if (a[1] == 0.0) 
            { 
                r = -a[2] / a[0]; 
                if (r < 0) 
                { 
                    r = sqrt(-r); 
                    v = complex<double>(0, r); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    r = sqrt(r); 
                    roots.push_back(complex<double>(r)); 
                    roots.push_back(complex<double>(-r)); 
                } 
            } 
            else 
            { 
                r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]); 
                if (r < 0) 
                { 
                    v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 * 
a[0])); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0])); 
                    roots.push_back(v); 
                    v = complex<double>(a[2] / (a[0] * v.real())); 
                    roots.push_back(v); 
                } 
            } 
        } 
        return; 
    }; 
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    if (n > 0) 
        quadratic(coeff); 
 
    return roots; 
} 
 
 

Example 1. 
Here is an example of how the above source code is working. 
 
For the real Polynomial: 
+1x^4-10x^3+35x^2-50x+24 
Start Ostrowski IteraƟon for Polynomial=+1x^4-10x^3+35x^2-50x+24 
 Stage 1=>Stop CondiƟon. |f(z)|<2.13e-14 
 Start    : z[1]=0.2 dz=2.40e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Ostrowski Step:  z[1]=0.6 dz=-3.98e-1 |f(z)|=3.9e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-3.98e-1 |f(z)|=2.0e-1 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-3.98e-1 |f(z)|=9.9e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=1 dz=3.87e-2 |f(z)|=1.6e-2 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=3.87e-2 |f(z)|=2.7e-1 
         : No improvement. Discard the last try step 
 Ostrowski Stage 2 Step:  z[1]=1 dz=-2.63e-3 |f(z)|=5.3e-5 
IteraƟon: 3 
 Ostrowski Step:  z[1]=1 dz=-8.78e-6 |f(z)|=8.5e-10 
 In Stage 2. New Stop CondiƟon: |f(z)|<2.18e-14 
 Ostrowski Stage 2 Step:  z[1]=1 dz=-1.41e-10 |f(z)|=0 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Ostrowski  z[1]=1 dz=-8.78e-6 |f(z)|=0 
AlteraƟon=0% Stage 1=67% Stage 2=33% 
 Deflate the real root z=1 
Start Ostrowski IteraƟon for Polynomial=+1x^3-9x^2+26x-24 
 Stage 1=>Stop CondiƟon. |f(z)|<1.60e-14 
 Start    : z[1]=0.5 dz=4.62e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Ostrowski Step:  z[1]=1 dz=-7.54e-1 |f(z)|=3.9e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=2 dz=-7.54e-1 |f(z)|=6.4e-2 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=3 dz=-7.54e-1 |f(z)|=2.6e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=2 dz=-2.95e-2 |f(z)|=2.7e-3 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=2 dz=-2.95e-2 |f(z)|=5.4e-2 
         : No improvement. Discard the last try step 
 Ostrowski Stage 2 Step:  z[1]=2 dz=-1.32e-3 |f(z)|=4.1e-6 
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IteraƟon: 3 
 Ostrowski Step:  z[1]=2 dz=-2.06e-6 |f(z)|=1.3e-11 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.42e-14 
 Ostrowski Stage 2 Step:  z[1]=2 dz=-6.36e-12 |f(z)|=0 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Ostrowski  z[1]=2 dz=-2.06e-6 |f(z)|=0 
AlteraƟon=0% Stage 1=67% Stage 2=33% 
 Deflate the real root z=2.0000000000000004 
Solve Polynomial=+1x^2-7x+11.999999999999996 directly 
Using the Ostrowski Method, the SoluƟons are: 
X1=1 
X2=2.0000000000000004 
X3=4.000000000000003 
X4=2.9999999999999973 
Time used: 0 msec. Solvable level: Easy 
 

 
 

Example 2. 
The same example just with a double root at x=1. We see that each step is a double step in line 
with a multiplicity of 2 for the first root. 
 
For the real Polynomial: 
+1x^4-9x^3+27x^2-31x+12 
Start Ostrowski IteraƟon for Polynomial=+1x^4-9x^3+27x^2-31x+12 
 Stage 1=>Stop CondiƟon. |f(z)|<1.07e-14 
 Start    : z[1]=0.2 dz=1.94e-1 |f(z)|=6.9e+0 
IteraƟon: 1 
 Ostrowski Step:  z[1]=0.5 dz=-3.23e-1 |f(z)|=2.0e+0 
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 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=0.8 dz=-3.23e-1 |f(z)|=1.8e-1 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-3.23e-1 |f(z)|=1.4e-1 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-3.23e-1 |f(z)|=8.9e-1 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=1 dz=8.71e-2 |f(z)|=3.1e-2 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=8.71e-2 |f(z)|=9.6e-4 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=0.9 dz=8.71e-2 |f(z)|=6.5e-2 
         : No improvement. Discard the last try step 
IteraƟon: 3 
 Ostrowski Step:  z[1]=1 dz=-6.27e-3 |f(z)|=2.4e-4 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-6.27e-3 |f(z)|=2.6e-8 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-6.27e-3 |f(z)|=2.3e-4 
         : No improvement. Discard the last try step 
IteraƟon: 4 
 Ostrowski Step:  z[1]=1 dz=-3.28e-5 |f(z)|=6.5e-9 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-3.28e-5 |f(z)|=0 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=1 dz=-3.28e-5 |f(z)|=6.5e-9 
         : No improvement. Discard the last try step 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Ostrowski  z[1]=1 dz=-3.28e-5 |f(z)|=0 
AlteraƟon=0% Stage 1=100% Stage 2=0% 
 Deflate the real root z=0.9999999982094424 
Start Ostrowski IteraƟon for Polynomial=+1x^3-8.000000001790557x^2+19.000000012533903x-
12.000000021486692 
 Stage 1=>Stop CondiƟon. |f(z)|<7.99e-15 
 Start    : z[1]=0.3 dz=3.16e-1 |f(z)|=6.8e+0 
IteraƟon: 1 
 Ostrowski Step:  z[1]=0.8 dz=-4.75e-1 |f(z)|=1.5e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-4.75e-1 |f(z)|=1.3e+0 
         : Improved. ConƟnue stepping 
 Try Step:  z[1]=2 dz=-4.75e-1 |f(z)|=2.1e+0 
         : No improvement. Discard the last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=0.9 dz=3.54e-1 |f(z)|=5.7e-1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=0.6 dz=3.54e-1 |f(z)|=3.7e+0 
         : No improvement. Discard the last try step 
 Ostrowski Stage 2 Step:  z[1]=1 dz=-8.44e-2 |f(z)|=2.6e-2 
IteraƟon: 3 
 Ostrowski Step:  z[1]=1 dz=-4.35e-3 |f(z)|=9.5e-5 
 In Stage 2. New Stop CondiƟon: |f(z)|<6.66e-15 
 Ostrowski Stage 2 Step:  z[1]=1 dz=-1.58e-5 |f(z)|=9.5e-10 
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IteraƟon: 4 
 Ostrowski Step:  z[1]=1 dz=-1.58e-10 |f(z)|=8.9e-16 
 In Stage 2. New Stop CondiƟon: |f(z)|<6.66e-15 
 Ostrowski Stage 2 Step:  z[1]=1 dz=1.48e-16 |f(z)|=8.9e-16 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Ostrowski  z[1]=1 dz=-1.58e-10 |f(z)|=8.9e-16 
AlteraƟon=0% Stage 1=50% Stage 2=50% 
 Deflate the real root z=1.0000000017905575 
Solve Polynomial=+1x^2-7x+12 directly 
Using the Ostrowski Method, the SoluƟons are: 
X1=0.9999999982094424 
X2=1.0000000017905575 
X3=4 
X4=3 
Time used: 1 msec. Solvable level: Easy 

 
 

Example 3. 
A test polynomial with both real and complex conjugated roots. 
 
For the real Polynomial: 
+1x^4-8x^3-17x^2-26x-40 
Start Ostrowski IteraƟon for Polynomial=+1x^4-8x^3-17x^2-26x-40 
 Stage 1=>Stop CondiƟon. |f(z)|<3.55e-14 
 Start    : z[1]=-0.8 dz=-7.67e-1 |f(z)|=2.6e+1 
IteraƟon: 1 
 Ostrowski Step:  z[1]=-2 dz=1.65e+0 |f(z)|=7.0e+1 
 FuncƟon value increase=>try shorten the step 
 Try Step:  z[1]=-2 dz=8.24e-1 |f(z)|=3.1e+0 
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         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=-1 dz=4.12e-1 |f(z)|=1.8e+1 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=-2 dz=6.27e-2 |f(z)|=1.5e-1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=-2 dz=6.27e-2 |f(z)|=3.7e+0 
         : No improvement. Discard the last try step 
 Ostrowski Stage 2 Step:  z[1]=-2 dz=-2.74e-3 |f(z)|=1.4e-4 
IteraƟon: 3 
 Ostrowski Step:  z[1]=-2 dz=-2.58e-6 |f(z)|=2.6e-10 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.91e-14 
 Ostrowski Stage 2 Step:  z[1]=-2 dz=-4.88e-12 |f(z)|=0 
Stop Criteria saƟsfied aŌer 3 IteraƟons 
Final Ostrowski  z[1]=-2 dz=-2.58e-6 |f(z)|=0 
AlteraƟon=0% Stage 1=67% Stage 2=33% 
 Deflate the real root z=-1.650629191439388 
Start Ostrowski IteraƟon for Polynomial=+1x^3-9.650629191439387x^2-1.0703897408530487x-
24.233183447530717 
 Stage 1=>Stop CondiƟon. |f(z)|<1.61e-14 
 Start    : z[1]=-0.8 dz=-7.92e-1 |f(z)|=3.0e+1 
IteraƟon: 1 
 Ostrowski Step:  z[1]=1 dz=-1.86e+0 |f(z)|=3.5e+1 
 FuncƟon value increase=>try shorten the step 
 Try Step:  z[1]=0.1 dz=-9.30e-1 |f(z)|=2.5e+1 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=-0.3 dz=-4.65e-1 |f(z)|=2.5e+1 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Ostrowski Step:  z[1]=-7 dz=6.71e+0 |f(z)|=7.2e+2 
 FuncƟon value increase=>try shorten the step 
 Try Step:  z[1]=-3 dz=3.35e+0 |f(z)|=1.5e+2 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=-2 dz=1.68e+0 |f(z)|=4.9e+1 
         : Improved=>ConƟnue stepping 
         : Probably local saddlepoint=>Alter DirecƟon:  z[1]=(-0.4-i0.7) dz=(5.03e-1+i6.71e-1) |f(z)|=2.1e+1 
IteraƟon: 3 
 Ostrowski Step:  z[1]=(0.3-i2) dz=(-6.86e-1+i1.17e+0) |f(z)|=1.9e+1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=(1-i3) dz=(-6.86e-1+i1.17e+0) |f(z)|=8.4e+1 
         : No improvement. Discard the last try step 
 Ostrowski Stage 2 Step:  z[1]=(-0.09-i2) dz=(4.13e-1-i3.17e-1) |f(z)|=2.6e+0 
IteraƟon: 4 
 Ostrowski Step:  z[2]=(-0.18-i1.5) dz=(8.33e-2+i2.00e-2) |f(z)|=8.1e-2 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.36e-14 
 Ostrowski Stage 2 Step:  z[4]=(-0.1747-i1.547) dz=(-1.74e-3+i1.86e-3) |f(z)|=6.2e-5 
IteraƟon: 5 
 Ostrowski Step:  z[7]=(-0.1746854-i1.546869) dz=(1.94e-6-i4.50e-8) |f(z)|=4.2e-11 
 In Stage 2. New Stop CondiƟon: |f(z)|<1.36e-14 
 Ostrowski Stage 2 Step:  z[13]=(-0.1746854042803-i1.546868887231) dz=(-3.03e-13+i1.29e-12) 
|f(z)|=3.6e-15 
Stop Criteria saƟsfied aŌer 5 IteraƟons 
Final Ostrowski  z[7]=(-0.1746854-i1.546869) dz=(1.94e-6-i4.50e-8) |f(z)|=3.6e-15 
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AlteraƟon=20% Stage 1=60% Stage 2=40% 
 Deflate the complex conjugated root z=(-0.17468540428030602-i1.546868887231396) 
Solve Polynomial=+1x-10 directly 
Using the Ostrowski Method, the SoluƟons are: 
X1=-1.650629191439388 
X2=(-0.17468540428030602-i1.546868887231396) 
X3=(-0.17468540428030602+i1.546868887231396) 
X4=10 
Time used: 1 msec. Solvable level: Easy 
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The iterations trail towards the first two roots. 

Recommendation 
Since the efficiency index is higher than Newton, Halley, and others methods, Ostrowski’s multi-
point is worth considering. However, there is one notorious flaw and that is the reduction in 
convergence order when encountering multiple roots. Since you can still maintain a convergence 
order of 2 in these cases, you could consider it better than the Newton method due to its higher 
efficiency index of 1.59 (compared to 1.41 Newton) when dealing with well-separated roots.  
 

Final Remarks 
In this series of papers, we have addressed many of the classical methods e.g., fixed point, multi-
point, simultaneous methods etc. However, I have omitted two methods that are also worth 
mentioning and that is the famous “black-box” method by Jenkins-Traub and of course the 
eigenvalue method. Both of these methods are worth a separate paper maybe for a further 
expansion of this paper series.  Nerveless despite being quite different methods explained in the 
sixth installment all of them can be wrapped into the same framework as established in part one 
and two and going from one method to another you only need to change a few lines of code here 
and there while still maintain the robustness, resiliency, and efficient implementation of each 
method. 
 
 A web-based polynomial solver showcasing these various methods is available for further 
exploration and can be found on Polynomial roots that demonstrate all of these methods in 
action.  
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